A spatial bioeconomic model for MPA network design

Oceanography Workshop
September 16, 2008 • El Segundo, CA
Chris Costello
University of California, Santa Barbara

Why models help inform good decisions

- MLPA modeling team: What are ecological and economic consequences of a given MPA network?
- Bioeconomic model being developed and tuned to So Cal data to predict spatial effects of MPA networks
 - Economic and ecological criteria for a range of target species/fleets
- Larval dispersal is a critical component of model
 - How are patches "connected" across space?
 - Do connections differ among species?
 - What is temporal variability of connections?
 - Do larvae exhibit behavior or are they passive?

Model inputs/outputs

- Inputs: Current MPAs, Spatially-explicit habitat data, MPA locations, larval dispersal kernels, adult home range, dynamic biomass model, fleet model of fishing effort
- Outputs: Spatial larval supply, biomass, fishing effort, harvest, profit...all for 6 or 7 "model" species

Southern CA parameterization

- Currently parameterizing: urchin, abalone, kelp bass, lingcod, cabezon, blue rockfish
 - Will likely add 3-4 to this list
- Patches roughly 1km x 1km in size

An application to California's South-Central Coast

- Initial test species: kelp bass
- Adults relatively sedentary
- Larval dispersal via ocean currents
 - PLD=26-36 days
 - Oceanographic model of currents
- Settlement success and recruitment
 - Beverton Holt, associated with kelp abundance in patch
- Constant price per unit harvest, stock-effect on harvest cost function

Problem setup

- Maximize E{NPV} of profits from harvest.
 Find optimal patch-specific harvest strategy:
- Equation of motion:

$$X_{i,t+1} = z_{it}^{\mu} \mu_i(e_{it}) + z_{it}^{S} \sigma_i (\sum_{j=1}^{I} z_{jt}^{f} f_j(e_{jt}) D_{ji})$$

Dynamic Programming Equation (vector notation):

$$V_{t}(x_{t}) = \max_{e_{t}} \sum_{i=1}^{I} \pi_{i}(x_{it}, e_{it}) + \delta EV_{t+1}(X_{t+1})$$

Spatial implications for conservation

- Complex interactions:
 - MPA size and placement interacts with habitat, dispersal, home ranges, fisheries behavior to create complex spatial consequences.
- Use spatially-explicit models to predict:
 - Biomass of different species across space
 - Yield, Effort and Profit across space
 - Change from status quo

Models for real-time design

- Use as interactive "design tool"
 - Delineate MPA network on a map
 - Run model (takes < 1 minute)
 - Assess conservation and economic impacts (cumulative or spatial, dynamic or equilibrium)
- Value of individual MPAs
 - Ecological and Economic performance measures
 - Depends on whole network
 - System-wide performance with/without an MPA
- Generates predictions to guide monitoring
- Comparison across MPA network proposals

Temporal variability in dispersal

- Dispersal kernel is species-specific matrix of connections between source and destinations
- Estimated dispersal kernels are "mean"; what about temporal variability?
- Suppose dispersal kernel K_j has probability of occurrence p_i
- Can use to derive distribution over effects of an MPA network – which networks perform well under a range of conditions?
- Dynamic